The Evolution of the Bacterial Luciferase Gene Cassette (lux) as a Real-Time Bioreporter
نویسندگان
چکیده
The bacterial luciferase gene cassette (lux) is unique among bioluminescent bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate compounds required for its production of light. As a result, the lux system has the unique ability to autonomously produce a luminescent signal, either continuously or in response to the presence of a specific trigger, across a wide array of organismal hosts. While originally employed extensively as a bacterial bioreporter system for the detection of specific chemical signals in environmental samples, the use of lux as a bioreporter technology has continuously expanded over the last 30 years to include expression in eukaryotic cells such as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, the lux system has been developed for use as a biomedical detection tool for toxicity screening and visualization of tumors in small animal models. As the technologies for lux signal detection continue to improve, it is poised to become one of the first fully implantable detection systems for intra-organismal optical detection through direct marriage to an implantable photon-detecting digital chip. This review presents the basic biochemical background that allows the lux system to continuously autobioluminesce and highlights the important milestones in the use of lux-based bioreporters as they have evolved from chemical detection platforms in prokaryotic bacteria to rodent-based tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit microluminometry to image directly within a living host in real-time will be introduced and its role in the development of dose/response therapeutic systems will be highlighted.
منابع مشابه
Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line
BACKGROUND The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate f...
متن کاملCoexpression of luxA and luxB genes of Vibrio fischeri in NIH3T3 mammalian cells and evaluation of its bioluminescence activities.
Expression of bacterial luciferase enzyme (lux) in eukaryotic cells would provide a new bioreporter system for in vivo imaging and diagnostics technology. In spite of this, until now only a few efforts have been made to express bacterial luciferase enzyme in eukaryotic cells. We attempted to synthesize an expression construct of luxA and luxB genes from Vibrio fischeri. The luxA and luxB genes ...
متن کاملExpression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae.
The luxA, B, C, D, and E genes from Photorhabdus luminescens were cloned and functionally expressed in Saccharomyces cerevisiae to construct a bacterial lux-based yeast bioreporter capable of autonomous bioluminescence emission. The bioreporter was engineered using a series of pBEVY yeast expression vectors that allowed for bi-directional constitutive or inducible expression of the individual l...
متن کاملP-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes
Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...
متن کاملThe Real-Time-Based Assessment of the Microbial Killing by the Antimicrobial Compounds of Neutrophils
A recombinant Escherichia coli K-12 strain, transformed with a modified bacterial luciferase gene (luxABCDE) from Photorhabdus luminescens, was constructed in order to monitor the activity of various antimicrobial agents on a real-time basis. This E. coli-lux emitted, without any addition of substrate, constitutive bioluminescence (BL), which correlated to the number of viable bacterial cells. ...
متن کامل